914 resultados para maternal fetal genotype test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to physical health risks, it has been postulated that hyperemesis gravidarum (HG) - severe and persistent nausea and vomiting during pregnancy - can adversely affect maternal mental health and maternal-fetal attachment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance: Bauhinia forficata Link, commonly known as paw-of-cow, is widely used in Brazilian folk medicine for the treatment of diabetes.Aim of this study: To evaluate the effect of Bauhinia forficata treatment on maternal-fetal outcome and antioxidant systems of streptozotocin-induced diabetic rats.Materials and methods: Virgin female Wistar rats were injected with 40 mg/kg streptozotocin before mating. Oral administration of an aqueous extract of Bauhinia forficata leaves was given to non-diabetic and diabetic pregnant rats at increasing doses: 500 mg/kg from 0 to 4th day of pregnancy, 600 mg/kg from 5th to 14th day and 1000 mg/kg from 15th to 20th day. At day 21 of pregnancy the rats were anaesthetized with ether and a maternal blood sample was collected for the determination superoxide dismutase (SOD) and reduced glutathione (GSH). The gravid uterus was weighed with its contents and fetuses were analyzed.Results and conclusion: The data showed that the diabetic dams presented an increased glycemic level, resorption, placental weight, placental index, and fetal anomalies, and reduced GSH and SOD determinations, live fetuses, maternal weight gain, gravid uterine weight, and fetal weight. It was also verified that Bauhinia forficata treatment had no hypoglycemic effect, did not improve maternal outcomes in diabetic rats, but it contributed to maintain GSH concentration similarly to non-diabetic groups, suggesting relation with the decreased incidence of visceral anomalies. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is no evidence about the integrated issue on glycemia, lipid profile, oxidative stress, and anomaly frequency of pregnant diabetic rats neonatally exposed to streptozotocin.Objective: Evaluating the impact of hyperglycemia in diabetic rats neonatally exposed to streptozotocin on maternal reproductive and fetal outcomes and the relationship with lipid profile and maternal oxidative stress.Material and Methods: Ten 90-day-old female Wistar rats were mated to obtain offspring. Some of these newborns received streptozotocin (70 mg/kg, i.p. - n5-STZ group) and the remainder given only citrate buffer (control group) on their day 5 of life. At adult life, these rats (n =13 animals/group) were mated and, at day 21 of pregnancy, they were killed to obtain a maternal blood samples for biochemical determinations. The gravid uterus was weighed with its contents and fetuses were analyzed.Results: At day 0 of pregnancy, glycemic means of n5-STZ rats were significantly greater compared to those of control rats, but presented fetuses classified as small for pregnancy age. The n5-STZ rats showed increased total cholesterol, triglycerides, MDA concentrations, lower SOD activity and increased frequency fetal visceral anomalies as compared to the control group.Conclusion: This study showed that the experimental model used led to mild hyperglycemia during pregnancy, although it did not lead to increased macrosomic fetus rates. The hyperglycemic maternal environment caused metabolic alterations, including increased triglyceride and total cholesterol concentrations, and elevated oxidative stress, contributing to increase fetal visceral anomalies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the reproductive performance and the development of their offspring on rat pregnancy. Wistar pregnant rats were gavaged with 0 mg/kg wb/day (control group, n = 20) and 166.5 mg/kg/day of a mixture of vitamin C, hesperidin and piperidol (experimental group, n = 20) during the organogenic period (from day 5 to 14 of pregnancy; positive vaginal smear = day 0). The female rats were killed on day 21 of pregnancy. The number of implantations, resorptions (dead embryos), and live/dead fetuses were counted for the analysis of the postimplantation loss rates. There was neither alteration in maternal reproductive performance, but it was verified an increase of the number of fetuses presenting dilated urether, hydronephrosis, and reduced ossification of skull due to the treatment of female rats with a mixture of vitamin C, hesperidin and piperidol, these abnormalities were considered transitory and may not interfere on offspring development. It was not verified other type of major malformation neither the appearance of fetuses presenting atrophy of upper limbs that it could be associated to use of this drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of diabetes in pregnancy leads to hormonal and metabolic changes making inappropriate intrauterine environment, favoring the onset of maternal and fetal complications. Human studies that explore mechanisms responsible for changes caused by diabetes are limited not only for ethical reasons but also by the many uncontrollable variables. Thus, there is a need to develop appropriate experimental models. The diabetes induced in laboratory animals can be performed by different methods depending on dose, route of administration, and the strain and age of animal used. Many of these studies are carried out in neonatal period or during pregnancy, but the results presented are controversial. So this paper, addresses the review about the different models of mild diabetes induction using streptozotocin in pregnant rats and their repercussions on the maternal and fetal organisms to propose an adequate model for each approached issue. © 2013 D. C. Damasceno et al.